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ABSTRACT

The development of Gortler vortices in boundary layers over curved walls
in the nonlinear regime 1is investigated. The growth of the boundary layer
makes a parallel flow analysis impossible except in the high wavenumber regime
so in general the instability equations must be integrated numerically. Here
the spanwise dependence of the basic flow 1s described using a Fourier series
expansion whilst the normal and streamwise variations are taken into account
using finite differences. The calculations suggest that a given disturbance
imposed at some position along the wall will eventually reach a local equi-
1librium state essentially independent of the initial conditions. 1In fact, the
equilibrium state reached is qualitatively similar to the large amplitude high
wave-number solution described asymptotically by Hall (1982b). 1In general, it
is found that the nonlinear interactions are dominated by a “mean field” type
of interaction between the mean flow and the fundamental. Thus, even though
higher harmonics of the fundamental are necessarily generated, most of the
disturbance energy is confined to the mean flow correction and the funda-
mental. A major result of our calculations is the finding that the downstream
velocity field develops a strongly inflectional character as the flow moves
downstrean, The latter result suggests that the major effect of Gortler
vortices on boundary layers of practical importance might be to make them

highly receptive to rapidly growing Rayleigh modes of instability.

This work was supported under the National Aeronautics and Space
Administration under NASA Contract No, NAS1-18107 while the author was 1in
residence at the Institue for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23665.
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INTRICJICTICN

Our concern is with the effect of nonlinearity on the growth of Taylor-
Gortler vortices in developing boundary layers. The presence of such vortices
in many flows of practicel importance such as those which occur over turbine
blades or over laminar flow aercfoils has recently stimulated much research
aimed at understanding their structure in the linear regime. However the
nonlinear problem has, apart from the high wavenumber analysis of Hall (1882b],
received little attention because of the difficulty in taking care of non-
parallel effect. At high wavenumbers Hall found that nonlinear effects have
a stabilizing effect and prevent the exponential growth of the vortices

predicted by linear theory.

In previous investigaetions Hall (1982a, 1983), hereafter referred to as
I, II respectively, looked at the linear Gortler problem and showed that
except at high wavenumbers parsllel flow calculations for the Gortler problem
are net valid because the streamwise and nomal dependences of the vortices
cannct be separated. In fact,in the only regime where the instability eguations
can pe reduced to ordinary differential eguations, the asymptotic theory of 1
provides trivially a neutral curve or growth rate at least as accurate as that
produced by the parallel flow theories. Here by 'parallel' we simply mean any
theory which ignores any term in the linear instability equations. Of course
the perallel flow theories correspond to truncations of the instability equations
of varying severity. Thus for example Gortler (1940), (later corrected
numerically by Hammerlin (1856)), retained only the terms which would be
present in the corresponding Taylor-Couette flow celculation whilst Smith (1855)
retained many terms associated with the growth of the boundary layer. Other
truncations of the instability eguations have been given by, for example,

Floryan and Saric (1978) and Herbert (1978).
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At S(%1) waven.mbers the various paraliel flow theories give guite ci+ zrent

most extreme
results and in the/ cases predict instability at zero Gortler number or zero
wavenumber. In II it was argued that at 0(1) wavenumbers these calculations
are necessarily incorrect because their neglect of streamwise derivatives of
the disturbance velocity field gives the wrong structure for the disturbance
at the edge of the boundary layer. If these terms are retained it was shown
that the vortices decay to zero at the edge of the boundary layer at a rate
independent of the vortex wavenumber. In fact the linear instability equations
are parabolic in the streamwise direction and can therefore be solved numerically
by marching downstream from some initial location. A 'local'’ neutral position
can then be defined to be the point where some disturbance flow quantity has a
zero rate of change along the wll. This position depends on the location and
form for the initial disturbance so that the notion of a unique neutml curve is

not tenable for the Gortler problem. However, at high wavenumbers the numerical

calculations of II converged to the unigque asymptotic result of I.

Here we shall extend the parallel flow calculations of I to the nonlinear
regime appropriate to disturbances with wavenumber of 0(1}. At higher wave-
numbers the asymptotic high wavenumber theory of Hall (1882b), hereafter
referred to as III, showed that in this regime the nonlinear problem is
dominated by a 'mean field' type of interaction rather than one typical of a
Stuart-Watson approach. It was shown in III that the mean flow correction
griven by a finite amplitude vortex ultimately becomes larger than the vortices
driving it. At sufficiently large amplitude the mean flow correction described
in IIT would cause the basic state to develop an inflection point and therefore
pussibly make Lhe boundary layer susceptible to repidly growing Rayleigh
instabilities. A primary aim of the calculation is to confirm the latter result
at large wavenumbers and investigate the sitwstion at 0(1) wavenumbers. Our
calculations will also enable linear instability calculations of finite
amplitude Gortler vortices to be ultimately carried out along the lines of the

recent calculation of Bennett and Hall (1986). The latter authors were concerned
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with tne corresponding irternasl fulil, gevelicced fliow Delwzen concentric
cylingers and showed that even small amplitude vortices csuse a massive

destabilization of the undisturbed flow te Tollmien-Schlichting waves.

Since there is no rational way to reduce the nonlinear nonparallel
Gortler problem to a series of crdimary differential equations using the
Stuart-Watson method we soclve the equations governing finite amplitude
vortices using a numeriem 1l method based on the finite difference formulation
of II together with a Fourier expansion to take care of the spanwise dependence
of the flow. The vortices are assumed to be steady so that the equa tions
governing their development can be marched downstream from the initial
location where the disturtence is imposed. This is done using the implicit
scheme of II together with an iteration procedure to take care of the non-
linear terms which are now present in the calculation. At each downstream
location the energy in each Fourier mode can be calculated in order to monitor
the development of the instability. We shall see that nonlinear effects
prevent the exponential growth of the disturbances predicted by linear
theory so that, at lszst in the limited number of cases we have investigated,
nonlinear effects are stabilizing. We shall also see that any given vortex
will sufficiently far downstream develop a structure consistent with the
nonlinear theory of III. The latter result is not surprising since the
effective vortex wavenumber increases in the streamwise direc tion until the

asymptotic theory of III applies.

Apart from the arbitrariness associated with the linear problem described
in II the nonlinear problem introduces further compiic tions bemuse of the
further freedom we now have when imposing the initial disturbance. Our
calculations are, of course, restricted to a finite number of situations but
nevertheless the similarity between the results enables us to make some
tentative conclusions about the role of nonlinear effects in the Gortler
problem. The procedure adopted in the rest of the paper is as follows: in

Section 2 we formulate the nonlinear instability equations and describe a
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numerical scheme which can be used to integrate them, In section 3 we cescribe
the results we have obtained and use them to draw some conclusions about non-

linear Gortler vortices.

2. FORMULATION OF THE INSTABILITY EQUATIONS AND THEIR SOLUTION.

Consider the flow of a viscous fluid of kinematic viscosity v over a wall
of curvature a 'k(x/L). Here 2 and a are typical length scales associated
with the downstream development of the flow and the local radius of curvature of
the wall. We take UO to be a typical flow speed and define a Reynolds number

Re by

Re = — , (2.1)
and consider the limit of Re » =« with the Gortler number G, defined by

6 = = Re’, (2.2)

held fixed. Let us take (X,Y,Z) to be dimensionless variables in the
l 1
streanwise, normal and spanwise directions scaled on £, Re®g, Re® s

respectively. The velocity field is taken to be of the form
- - -1 -1
U= UG Y)Y + UIXY,Z),  Re P(VIX,Y) ¢ VIX,Y,Z)), Re *W(X,Y,2)) ,(2.3)

where (0(X,Y), v(X,Y)) corresponds to a Blasius boundary leyer and

(U,V,W]) and the correspondirg pressure perturbation P are functions of

X,Y,Z. Following the procedure outlined in III it is an easy matter to
3

show from the Navier-Stokes equations that, correct to order Re-5,

u,v,W,P satisfy




. ‘JX’VY+WZ = 0,

Upy * Uz - Vuy = uly + Uuy + Vo, + Wy + 0 ,

Vyy * Vgz BRI - Py = uv, ¢ UV ¢ W v W+ 0,

Wyy * Wy = Py = W, + Vi, + Qg , (2.4a,b,c)
where Q,, 0?, Qa are defined by

Q, = UUx + VUY + WUZ ,

| 0 = Wy + W + W, + 16xkU2 ,

Q; = wa + VwY + wwz . {2.5a,b,c}

If the nonlinear functions Ql, 02, 03 are set equal to zero in the

above equations we recover the equations of II. The nonlinear theory of
III gives an asymptotic solution of (2.4) valid in the limit of g% >> 1 .
This 1limit is more relevant than it might appear to be at first sight since
it corresponds to the large X state of any initial disturbance imposed on
the flow. Thus in our numerical calculations we expect to recover

gualitatively the results of III sufficiently far downstream from where

the critical disturbance is introduced.

In order to reduce (2.4) to a form more suitable for computational
purposes we can eliminate P and W from the linear terms in (2.4c,d)

to give
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where Q;, Q, and 03 are given by (2.5a,b,c) respectively.

Suppose that U, V and W are then expanded in the form

U = U, + Z U (X,Y) cos naZ ,
0 n
n=1
vV = VO + n§1 Vn(X,Y] cos naZl

=
"
ne-8

wn[X,Y] sin naz (2.7a,b,c)
1

n

where we have anticipated the well-known result that the nonlinear

interactions which occur in the Taylor-Gortler problem do not generate
a mean flow in the spanwise direction. We then substitute for (U,V,W)
from (2.7) into (2.4a) and (2.6) and equate like Fourier coefficients.

This procedure shows that the mean flow correction satisfies

' - . - - u. - vl = ] .
LDYY VOUY uUOX UOUX vLUY UOUDX + VOLDY + FD (2.8)

where F_ = +3 ) {VU,_ -UV _ - 2maUme} ,

m - mY m mY

and V0 is determined by

18] aV
0 + 0 -
3X W = 0 B (2.9)
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For computational purposes we must of course truncate the infinite sums in
(2.7) at some suitably large value for the upper limit. We therefore

replace the upper limit in (2.7} by N .

Similarly we find that Un satisfies

_ a2 -0 - 8 - 5 - i
UnYY a Un uUnX Uan VnUY VbnY
N-1
= F_ = Y V. U, -U V., +mW U -msU W
n m=1 n-m mY n-m myY n-m m n-m m
N#1
N-n
+ - - _ '
m§1 Vn+m UmY Un+m VmY ma Umwn*m ma Un+m Wm
n#N
N
+ YV _u,-U V. -maW U -mauU W (2.10]
m-n mY m-n mY m-n m m-n m
m = n+1
n#1

where § =0 + U and ¥ = U + Vv

An equation of the same form can be derived from (2.6) by equating

U, Vv, W,

to zero the coefficient of cos naz . Suppose that U., V..
0 G n n n

for n=1,2,3..... are known at X , we now describe how (2.8) and (2.10)
can be stepped forward to X + € . The scheme used is essentially that
described in II together with an iteration procedure to take care of the
nonlinear terms now present., Thus for example the mean flow equation (2.8)

is discretized using finite differences in the X and VY directions to give
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n+1 m+1 n m+1 n-1 m+1 nm n m+ nm nm n+1 m n-1 m
! - - = -
Yo Y i g L, Y- {_Vo Ve }
- C G

L PR+ {Un+1 k+1_ |, n=1 kn
nm _nm nm- nm _ 0 nk+1 _  nkl | Vnk+1 0 0 . Fnk+1
T e o 2h 0

(2.11)

Here indices n, m refer to the grid point X = X_. +m , Y = nh .

The nonlinear terms on the right hand side of (2.11) are initially evaluated
with k = m-1 and the resulting tridiagonal system can be solved to give U0
at X = X0 + (m+ 1)e . The equation (2.10) can be stepped forward in a

similar manner to give Um’ m=1, .. , N at X = XO + (m+ 1)e . Likewise

the V equation can be stepped forward by solving a pentadiagonal system. At

this stage the nonlinear terms can be expressed in terms of the velocity field

now calculated at X = XD + (m + 1)e . The equation can then be solved again

for the flow quantities at X = XD + (m+ 1)e and the iteration procedure

continued until the change in Ug+1 ", UT’1 ™ etc is sufficiently small. Thus

(2.11) and the corresponding equations for Um, Vm are effectively solved with

k = m by iterating on the nonlinear terms on the right hand side.

3. RESULTS AND DISCUSSION

We shall firstly describe some results obtained in order to verify the
numerical scheme used. These calculaticons were carried out at various values

of the parameters of the problem but here we shall concentrate on the case

X

a=.2, G= .0288, «(X) = 55 ¢

(3.1)

This choice for the curvature function x means that the effective local
5/2 :
Gortler number varies like X / whilst the local wavenumber varies like X .

The esymptotic theory of I showed that the neutral curve which can be uniguely
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defined at high wavenumbers has the Gortler numper proportional to the fourth
power of the wavenumber znd therefore (3.1) corresponds to a disturbance which

remains in the unstable region when X increases.
The basic state was disturbed at X = 55, by imposing the condition
utn) = nfe’ , vim = 0 (3.2)

and integrating the linearized equations to X = 100. At this stage the
disturbance is almost locally neutral stable according to the criterion of

ITI and the linear velocity field was given an amplitude A equal to the
maximum X-disturbance velocity component. The nonlinear equations were then
integrated for X > 100 and the local growth rates and energies of the
different harmonics were calculated. We defined the energy of the nth harmonic
to be

1
E = J {Unz(X,Y] + vn2(x,v) + wnz(X,Y]}dY, N=1,2,... (3.3)
0

and the energy of the mean flow distortion was defined by
1

E = f {UDZ(X,Y)}dY. (3.4)
0

Here we have omitted the contribution from Vo since VD -+ constant

when Y + = ., The growth rate eéx] of the nth mode was defined by

6 (X) = — E (3.5)
n

so that for a parallel boundary layer in the linear regime on would

be twice the linear spatial amplification rate.
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we know from the nonparallel calculastions of I that 6,{x) initially
depends sensitively on the form and location of the initial disturbance.
Here the situation is more complex because we can specify each Fourier mode
and the mean flow distribution, 1In Figure 1 we have shown the dependence
of 61, c21 on X for five different values of A the disturbance flow
amplitude. Apart from the fundamental all the Fourier components of the
disturbance were set equal to zero at the initial location. The calculations
shown were carried out with N = 4, ¢ = .025, y_ = 150. Similar calculations

were carried out by changing N to 8, e to .05 and y_ to 100 in turn. The

results agreed with those of Figure 1 to the graphical accuracy of that Figure.

We see in Figure 1 that for & 0.5% disturbance the growth rate over the
interval shown is indistinguishable from linear theory. At higher values of A
the growth rate is initially increased above the linear value and then falls
below it when X increases. The amount by which the growth rate is decreased
from the linear value increases with A and we conclude that in this situation
nonlinear effects are stabilizing. We attribute the initial increase in the
growth rate to the relatively quick change in flow structure which must necessarily

occur when nonlinear effects are operational.

In Figure 2 we have shown the corresponding growth rates for the first
harmonic, again we see that after the initial period of growth the disturbance
growth decreases with . We note that the growth rates of Figures 1, 2 are
comparable even though the first harmonic is locally neutrally stable at e
rowth of t

.
he fir

+
i + 19

higher Gortler Number than is the fundamental. This S
harmonic is of course driven by nonlinear effects. Though the calculations
represented in Figure 2 clearly indicate the stabilizing effect of nonlinearity
they do not indicate the emergence of any local equilibrium state as the

vortices develop downstream.
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Furtter c2isulatiores were carried oot for the same initial conditior

(3.2) but with different curvature distributions «k(X) . The three
curvature distributions which we examined in detail and the values of a

~and G wused in the calculations were :

1
(a) (X} = ,a = ,16, 6 = .1,
1+ (,02X - 2.4)
X
(b} x(X) = TG a = .2, G = .23,
and (c) k(X)) = -ﬁé {1 + .2 sin —5-} a 2 G = .23
10 * 40 "’ e : :

The first curvature distribution was chosen because it corresponds to a flow
over a hump such that the flow is only unstable over a finite interval. The
second distribution was chosen since, as in the asymptotic theory of I, it
gives a local Gortler number proportional to the fourth power of the local
wavenumber. At relatively large values of X the local growth rate changes
little with X and in the nonlinear regime we might expect to recover the
results of III. The case (c) was chosen in order to obtain information about
the possible influence of a small amplitude wall waviness on nonlinear Gortler
vortices. The linear growth rate curves corresponding to (a), (b) and (c) and
the initial conditions (3.1) are shown in Figure 4. It is interesting to see
that the small amplitude waviness causes & significqnt difference between (b}
and {(c). We note that, whereas (a) is stable beyond X ~ 140, (b) and (c)
remain unstable up to X -~ 200 beyond which the growth rates increase

slowly.

In Figure 3a we have shown the energy functions E0 and E, corresponding
to A= .1, .2 together with a = .16, G = .0288, and «k(X) = -255 . We see
that the differences between the values of E,, E, for A= .,1and 8= .2

decreases with X . This is presumably because when X 1is large the effective
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wavenumber is alsc large and the analysis of III suggests that in this regime
there exists a unique finite amplitude solution independent of its initial
upstream form. However the calculation of III cannot be applied directly to
the calculations reported here since they are restricted to an asymptotically
small interval near to the neutral location. Nevertheless the short wave-
length nonlinear theory of III does suggest that in this regime the origin

of the disturbance is unimportant.

In Figures 3b,c we have shown the total downstream velocity component us
at the spanwise locations a8z = m/2, w, 2n together with the Blasius profile
which exists in the absence of the vortices. The profiles shown correspond to
X = 300 and we see that at this location there is very little difference between
the profiles originating from A = .1 and &8 = .2 . We further note that the

values of u corresponding to az = m/2 are identical to those with az = 37/2 .

T
Of particular interest is the fact that the az = 7 profile has a strongly
inflectional profile which is probably locally unstable toc highly amplified
Rayleigh instabilities., The location az = 7 of course corresponds to the
boundary between vortices where the motion of the fluid is away from the wall.
We might therefore expect that such locations will be the most susceptible to

the secondary instabilities which cause the onset of time dependence in the

Gortler problem.

In Figures 3d,e,f,g we have shown the individual velocity components
appropriate to the above situation with 8= _,2 . It can be seen that the
disturbance is dominated by the fundamental and mean flow correction velocity
5. We ses that U; at X = 300 has a significantly different shape
than the linear solution initially imposed on the flow at X = 100. We have

no physical explanation of the nonlinear mechanism which produces this distortion.

In Figure 5 we have shown the energy functions appropriate to the curvature

distribution (a). The linear eigenfunction was obtained by inserting (3.2} at

X = 55. and integrating until X = 85. where the nonlinear terms were turned on.
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The initial disturbance amplitudes were taskern to be = .1 and = ,15. we
see that the energy of the disturbance is again almost completely confined to
the fundamental and mean flow correction. The maximum value of the disturbance

energies El, E E3 occur close to the position where the linear growth rate

2'
{a) of Figure is zero. In contrast the maximum of E0 occurs at a higher
value of X . This suggests that the results of Figure 5 are dominated by the
interaction between the basic Blasius boundary layer and the fundamental

component of the disturbance and never reach any 'local’ nonlinear equilibrium

state.

In Figure 6 the results corresponding to the case (b) are shown. The
nonlinear terms were again turned on at X = 85. -after integrating (3.2)
from X = 35. and four calculations corresponding to 4 = .05, .1, .15, .20
were carrigd out. Figures ba,b,c show the evolution in X of the energy
functions Eo, E1 and E2 for this situation. The functions EO and E1
appear to approach limiting values essentially independent of A whilst E2
initially increases before decaying at sufficiently large values of X . This
suggests that as the vortices develop into a region where the effective Gortler
number Gx and the effective wavenumber a, satisfy Gx - ax“, a, >> 1
the asymptotic structure found in III is qualitatively recovered. In the
latter calculation it was found that small wavelength Gortler vortices
develop through a 'mean-field' interaction between the fundamental and mean
flow correction. A quentitative comparison between our results and III is

not possible since the asymptotics of III was restricted to a Ota_ll neighbourhood

of the neutral value of X .

The downstream development of the individual velocity components in the

above calculation is shown in Figure 7. It can be seen that the characteristic

nonlinear shape of Ul shown in Figure 3d for the «x = %% calculation is

reproduced at sufficiently large values of X . The value of X required to

produce this characteristic shape decreases with the size of the initial
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amplitude. Similarly the mean flow corrections calculated have a similar
shape to that shown in Figure 3d and that produced.by the asymptotic theory
of III. Indeed the mean flow corrections calculated for the cases (a), (b),
and (c) together with the case «k = %% all had the same characteristic
shape. Similarly the downstream velocity component was always found to
increase away from the wall, reach a maximum and then decay to zero. Since
this velocity component and the mean flow correction are always much larger
than the other X velocity components it follows that the spanwise distri-
bution of u the total downstream velocity component will always be similar

T

to those shown in Figure 3b. In Figure 8 we have shown how‘these profiles

]

develop in X for the case A .05 together with the corresponding undis-
turbed profile. Again the az = 1 profiles become highly inflectional

and are presumably highly unstable to Rayleighs instabilities of the type
discussed by, for example, Cowley and Tufty (1986). We believe that the
development of these highly inflectional profiles at the spanwise locations
where upwelling occurs is the most likely source of the time-dependent secondary

instabilities which steady Gortler vortices are known to suffer, see, for example,

Aihara (1965).

Finally in Figure 9 we have shown the energy distributions for the case
{c). The calculations were again performed by integrating (3.2) from X = 55,
to X = 85. where the nonlinear terms were turned on. A comparison between
Figures Sa,b,c and Figures Ba,b,c shows that the wall waviness does not have
a significant effect on the energy distributions for 4 = ,05 . However the
solutions for the larger amplitude & = .15 siuggest that the waviness increases
the energy of the disturbance up to X ~ 200. The computational expense of
these calculations prevented us from determining whether a small amplitude

waviness always leads to a destabilization of the boundary layer.
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The growth rate o, for the wall «x = g% , for & = .05, .1, .15,
The growth rate o, for the wall « = %% , for A = .05, .1, .15,
The energy distributions Eo, and E, for «x = %% , and A = .1, .2
The total X velocity component at different spanwise locations

X .
for X = 300., k = >0’ A= .1,
The total X wvelocity component at different spanwise locations

X
for X = 300., k = 35 A= ,2,

. X

The X velocity components at X = 300. for x = >0 A= .2 .
The Y wvelocity components at X = 300. for «x = %% , A= .2,
The 2Z wvelocity components at X = 300. for k = g% , A= .2,
The mean flow correction at X = 300. for x = %% , A= .2 .
The growth rates for the cases (&), (b), and (c) respectively
in the linear regime.
The energy function EO for (a) with & = .1, .15 .
The energy function E, for (a) with = ,1, .15 .
The energy function E for ((a) with = .1, .15 .

2
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Figure 5d The energy function E3 for (a) with A = .1, .15
Figure Ba The energy function E0 for (b) with A = .05, .1, .15, .2 .
Figure 6b The energy function E, for (b) with A = .05, .1, .15, .2 .

Figure Bc The energy function E2 for (b) with A = .05, .1, .15, .2 .
Figure 7a The X velocity component U1 for (b) with A = ,05 .
Figure 7b The X veldcity component U, for (b) with & = .1 .

Figure 7c The X wvelocity component U, for (b) with & = .15 .
Figure 7d The X wvelocity component U, for (b) with A = ,20 .
Figure 7e The X wvelocity component U0 for (b) with & = .05 .
Figure 7 The X velocity component Uo for (b) with A = .1

Figure 7g The X wvelocity component U0 for (b) with & = .15

Figure 7h The X velocity component U, for (b) with A = .2 .
Figure 8a The total X wvelocity component for (b) with X = 125, 185,

205, 245, and A =0 .

x
"

Figure 8b The total X wvelocity component for (b) with 125, 165,

205, 245, and A = .05, az = ©/2 .
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Figure 8¢ The total X wvelocity component for (b} with X = 125, 165,
205, 245, and 4 = .05, az = ©1 .

Figure 8d The total X velocity component for (b} with X = 124, 165,
205, 245, and & = .05, az = 2w ,

Figure 8a The energy functien EO for (c) with & = ,05, .15 .

Figure 9b The energy function E; for (c) with A = .05, .15 .

Figure Sc The energy function E, for (c) with 4 = .05, .15 .,
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